Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593829

RESUMO

Pancreatic alpha cell activity and glucagon secretion lowers as glucose levels increase. While part of the decrease is regulated by glucose itself, paracrine signaling by their neighboring beta and delta cells also plays an important role. Somatostatin from delta cells is an important local inhibitor of alpha cells at high glucose. Additionally, Urocortin3 (UCN3) is a hormone that is co-released from beta cells with insulin and acts locally to potentiate somatostatin secretion from delta cells. UCN3 thus inhibits insulin secretion via a negative feedback loop with delta cells, but its role with respect to alpha cells and glucagon secretion is not understood. We hypothesize that the somatostatin-driven glucagon inhibition at high glucose is regulated in part by UCN3 from beta cells. Here, we use a combination of live functional Ca2+ and cAMP imaging as well as direct glucagon secretion measurement, all from alpha cells in intact mouse islets, to determine the contributions of UCN3 to alpha cell behavior. Exogenous UCN3 treatment decreased alpha cell Ca2+ and cAMP levels and inhibited glucagon release. Blocking endogenous UCN3 signaling increased alpha cell Ca2+ by 26.8 ± 7.6%, but this did not result in increased glucagon release at high glucose. Furthermore, constitutive deletion of Ucn3 did not increase Ca2+ activity or glucagon secretion relative to controls. UCN3 is thus capable of inhibiting mouse alpha cells, but, given the subtle effects of endogenous UCN3 signaling on alpha cells, we propose that UCN3-driven somatostatin may serve to regulate local paracrine glucagon levels in the islet instead of inhibiting gross systemic glucagon release.

2.
J Mol Biol ; : 168559, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580077

RESUMO

Upstream open reading frames (uORFs) are cis-acting elements that can dynamically regulate the translation of downstream ORFs by suppressing downstream translation under basal conditions and, in some cases, increasing translation under stress conditions. Computational and empirical methods have identified uORFs in the 5'-UTRs of approximately half of all mouse and human transcripts, making uORFs one the largest regulatory elements known. Because the prevailing dogma was that eukaryotic mRNAs produce a single functional protein, the peptides and small proteins, or microproteins, encoded by uORFs are under studied. We hypothesized that a uORF in the SLC35A4 mRNA is producing a functionalmicroprotein (SLC35A4-MP) because of its conserved amino acid sequence. Through a series of biochemical and cellular experiments, we find that the 103-amino acid SLC35A4-MP is a single-pass transmembrane inner mitochondrial membrane (IMM) microprotein. The IMM contains the protein machinery crucial for cellular respiration and ATP generation, and loss of function studies with SLC35A4-MP significantly diminish maximal cellular respiration, indicating a vital role for this microprotein in cellular metabolism. The findings add to the growing list of functional microproteins and, more generally, indicate that uORFs that encode conserved microproteins are an untapped reservoir of functional microproteins.

3.
Nat Commun ; 15(1): 2441, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499565

RESUMO

Lipid synthesis increases during the cell cycle to ensure sufficient membrane mass, but how insufficient synthesis restricts cell-cycle entry is not understood. Here, we identify a lipid checkpoint in G1 phase of the mammalian cell cycle by using live single-cell imaging, lipidome, and transcriptome analysis of a non-transformed cell. We show that synthesis of fatty acids in G1 not only increases lipid mass but extensively shifts the lipid composition to unsaturated phospholipids and neutral lipids. Strikingly, acute lowering of lipid synthesis rapidly activates the PERK/ATF4 endoplasmic reticulum (ER) stress pathway that blocks cell-cycle entry by increasing p21 levels, decreasing Cyclin D levels, and suppressing Retinoblastoma protein phosphorylation. Together, our study identifies a rapid anticipatory ER lipid checkpoint in G1 that prevents cells from starting the cell cycle as long as lipid synthesis is low, thereby preventing mitotic defects, which are triggered by low lipid synthesis much later in mitosis.


Assuntos
Lipídeos , Mitose , Animais , Ciclo Celular , Fase G1 , Fosforilação , Mamíferos
4.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014093

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous bioactive lipids known for their anti-inflammatory and anti-diabetic properties. Despite their therapeutic potential, little is known about the sex-specific variations in FAHFA metabolism. This study investigated the role of Androgen Dependent TFPI Regulating Protein (ADTRP), a FAHFA hydrolase. Additionally, tissue-specific differences in FAHFA levels, focusing on the perigonadal white adipose tissue (pgWAT), subcutaneous white adipose tissue (scWAT), brown adipose tissue (BAT), plasma, and liver, were evaluated using metabolomics and lipidomics. We found that female mice exhibited higher FAHFA levels in pgWAT, scWAT, and BAT compared to males. FAHFA levels were inversely related to Adtrp mRNA, which showed significantly lower expression in females compared with males in pgWAT and scWAT. However, no significant differences between the sexes were observed in plasma and liver FAHFA levels. Adtrp deletion had minimal impact on both sexes' metabolome and lipidome of pgWAT. However, we discovered higher endogenous levels of triacylglycerol estolides containing FAHFAs, a FAHFA metabolic reservoir, in the pgWAT of female mice. These findings suggest that sex-dependent differences in FAHFA levels occur primarily in specific WAT depots and may modulate local insulin sensitivity in adipocytes. However, further investigations are warranted to fully comprehend the underlying mechanisms and implications of sex effects on FAHFA metabolism in humans.

5.
Biochemistry ; 62(21): 3050-3060, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37813856

RESUMO

Over the past decade, advances in genomics have identified thousands of additional protein-coding small open reading frames (smORFs) missed by traditional gene finding approaches. These smORFs encode peptides and small proteins, commonly termed micropeptides or microproteins. Several of these newly discovered microproteins have biological functions and operate through interactions with proteins and protein complexes within the cell. CYREN1 is a characterized microprotein that regulates double-strand break repair in mammalian cells through interaction with Ku70/80 heterodimer. Ku70/80 binds to and stabilizes double-strand breaks and recruits the machinery needed for nonhomologous end join repair. In this study, we examined the biochemical properties of CYREN1 to better understand and explain its cellular protein interactions. Our findings support that CYREN1 is an intrinsically disordered microprotein and this disordered structure allows it to enriches several proteins, including a newly discovered interaction with SF3B1 via a distinct short linear motif (SLiMs) on CYREN1. Since many microproteins are predicted to be disordered, CYREN1 is an exemplar of how microproteins interact with other proteins and reveals an unknown scaffolding function of this microprotein that may link NHEJ and splicing.


Assuntos
Peptídeos , Proteínas , Animais , Proteínas/genética , Peptídeos/genética , Fases de Leitura Aberta , Mamíferos/genética
6.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37808637

RESUMO

There has been a dramatic increase in the identification of non-conical translation and a significant expansion of the protein-coding genome and proteome. Among the strategies used to identify novel small ORFs (smORFs), Ribosome profiling (Ribo-Seq) is the gold standard for the annotation of novel coding sequences by reporting on smORF translation. In Ribo-Seq, ribosome-protected footprints (RPFs) that map to multiple sites in the genome are computationally removed since they cannot unambiguously be assigned to a specific genomic location, or to a specific transcript in the case of multiple isoforms. Furthermore, RPFs necessarily result in short (25-34 nucleotides) reads, increasing the chance of ambiguous and multi-mapping alignments, such that smORFs that reside in these regions cannot be identified by Ribo-Seq. Here, we show that the inclusion of proteogenomics to create a Ribosome Profiling and Proteogenomics Pipeline (RP3) bypasses this limitation to identify a group of microprotein-encoding smORFs that are missed by current Ribo-Seq pipelines. Moreover, we show that the microproteins identified by RP3 have different sequence compositions from the ones identified by Ribo-Seq-only pipelines, which can affect proteomics identification. In aggregate, the development of RP3 maximizes the detection and confidence of protein-encoding smORFs and microproteins.

7.
Mol Cell ; 83(10): 1725-1742.e12, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37084731

RESUMO

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.


Assuntos
Proteômica , Fatores de Transcrição , Humanos , Proteômica/métodos , Cisteína/metabolismo , Ligantes
8.
Nat Commun ; 14(1): 1328, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899004

RESUMO

The TINCR (Terminal differentiation-Induced Non-Coding RNA) gene is selectively expressed in epithelium tissues and is involved in the control of human epidermal differentiation and wound healing. Despite its initial report as a long non-coding RNA, the TINCR locus codes for a highly conserved ubiquitin-like microprotein associated with keratinocyte differentiation. Here we report the identification of TINCR as a tumor suppressor in squamous cell carcinoma (SCC). TINCR is upregulated by UV-induced DNA damage in a TP53-dependent manner in human keratinocytes. Decreased TINCR protein expression is prevalently found in skin and head and neck squamous cell tumors and TINCR expression suppresses the growth of SCC cells in vitro and in vivo. Consistently, Tincr knockout mice show accelerated tumor development following UVB skin carcinogenesis and increased penetrance of invasive SCCs. Finally, genetic analyses identify loss-of-function mutations and deletions encompassing the TINCR gene in SCC clinical samples supporting a tumor suppressor role in human cancer. Altogether, these results demonstrate a role for TINCR as protein coding tumor suppressor gene recurrently lost in squamous cell carcinomas.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , RNA Longo não Codificante , Animais , Camundongos , Humanos , Ubiquitina/metabolismo , Carcinoma de Células Escamosas/genética , Genes Supressores de Tumor , Queratinócitos/metabolismo , Neoplasias de Cabeça e Pescoço/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
9.
Cell Metab ; 35(1): 166-183.e11, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36599300

RESUMO

Microproteins (MPs) are a potentially rich source of uncharacterized metabolic regulators. Here, we use ribosome profiling (Ribo-seq) to curate 3,877 unannotated MP-encoding small ORFs (smORFs) in primary brown, white, and beige mouse adipocytes. Of these, we validated 85 MPs by proteomics, including 33 circulating MPs in mouse plasma. Analyses of MP-encoding mRNAs under different physiological conditions (high-fat diet) revealed that numerous MPs are regulated in adipose tissue in vivo and are co-expressed with established metabolic genes. Furthermore, Ribo-seq provided evidence for the translation of Gm8773, which encodes a secreted MP that is homologous to human and chicken FAM237B. Gm8773 is highly expressed in the arcuate nucleus of the hypothalamus, and intracerebroventricular administration of recombinant mFAM237B showed orexigenic activity in obese mice. Together, these data highlight the value of this adipocyte MP database in identifying MPs with roles in fundamental metabolic and physiological processes such as feeding.


Assuntos
Adipócitos Brancos , Tecido Adiposo Marrom , Humanos , Animais , Camundongos , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/metabolismo , Fases de Leitura Aberta/genética , Tecido Adiposo Branco/metabolismo , Adipócitos Marrons/metabolismo
11.
Mol Psychiatry ; 28(4): 1813-1826, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36127429

RESUMO

Mitochondrial DNA variants have previously associated with disease, but the underlying mechanisms have been largely elusive. Here, we report that mitochondrial SNP rs2853499 associated with Alzheimer's disease (AD), neuroimaging, and transcriptomics. We mapped rs2853499 to a novel mitochondrial small open reading frame called SHMOOSE with microprotein encoding potential. Indeed, we detected two unique SHMOOSE-derived peptide fragments in mitochondria by using mass spectrometry-the first unique mass spectrometry-based detection of a mitochondrial-encoded microprotein to date. Furthermore, cerebrospinal fluid (CSF) SHMOOSE levels in humans correlated with age, CSF tau, and brain white matter volume. We followed up on these genetic and biochemical findings by carrying out a series of functional experiments. SHMOOSE acted on the brain following intracerebroventricular administration, differentiated mitochondrial gene expression in multiple models, localized to mitochondria, bound the inner mitochondrial membrane protein mitofilin, and boosted mitochondrial oxygen consumption. Altogether, SHMOOSE has vast implications for the fields of neurobiology, Alzheimer's disease, and microproteins.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , DNA Mitocondrial/genética , Biomarcadores/líquido cefalorraquidiano
12.
Nat Chem Biol ; 19(2): 187-197, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36266352

RESUMO

Lipids contribute to the structure, development, and function of healthy brains. Dysregulated lipid metabolism is linked to aging and diseased brains. However, our understanding of lipid metabolism in aging brains remains limited. Here we examined the brain lipidome of mice across their lifespan using untargeted lipidomics. Co-expression network analysis highlighted a progressive decrease in 3-sulfogalactosyl diacylglycerols (SGDGs) and SGDG pathway members, including the potential degradation products lyso-SGDGs. SGDGs show an age-related decline specifically in the central nervous system and are associated with myelination. We also found that an SGDG dramatically suppresses LPS-induced gene expression and release of pro-inflammatory cytokines from macrophages and microglia by acting on the NF-κB pathway. The detection of SGDGs in human and macaque brains establishes their evolutionary conservation. This work enhances interest in SGDGs regarding their roles in aging and inflammatory diseases and highlights the complexity of the brain lipidome and potential biological functions in aging.


Assuntos
Envelhecimento , Lipídeos , Animais , Humanos , Camundongos , Envelhecimento/genética , Anti-Inflamatórios , Encéfalo/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo
13.
Cell ; 185(17): 3263-3277.e15, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35931082

RESUMO

Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to "knock in" specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias/genética , Escherichia coli/genética , Microbioma Gastrointestinal/fisiologia , Camundongos , Transgenes
14.
Nature ; 609(7928): 846-853, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940205

RESUMO

Thyroid hormones are vital in metabolism, growth and development1. Thyroid hormone synthesis is controlled by thyrotropin (TSH), which acts at the thyrotropin receptor (TSHR)2. In patients with Graves' disease, autoantibodies that activate the TSHR pathologically increase thyroid hormone activity3. How autoantibodies mimic thyrotropin function remains unclear. Here we determined cryo-electron microscopy structures of active and inactive TSHR. In inactive TSHR, the extracellular domain lies close to the membrane bilayer. Thyrotropin selects an upright orientation of the extracellular domain owing to steric clashes between a conserved hormone glycan and the membrane bilayer. An activating autoantibody from a patient with Graves' disease selects a similar upright orientation of the extracellular domain. Reorientation of the extracellular domain transduces a conformational change in the seven-transmembrane-segment domain via a conserved hinge domain, a tethered peptide agonist and a phospholipid that binds within the seven-transmembrane-segment domain. Rotation of the TSHR extracellular domain relative to the membrane bilayer is sufficient for receptor activation, revealing a shared mechanism for other glycoprotein hormone receptors that may also extend to other G-protein-coupled receptors with large extracellular domains.


Assuntos
Microscopia Crioeletrônica , Imunoglobulinas Estimuladoras da Glândula Tireoide , Receptores da Tireotropina , Tireotropina , Membrana Celular/metabolismo , Doença de Graves/imunologia , Doença de Graves/metabolismo , Humanos , Imunoglobulinas Estimuladoras da Glândula Tireoide/química , Imunoglobulinas Estimuladoras da Glândula Tireoide/imunologia , Imunoglobulinas Estimuladoras da Glândula Tireoide/farmacologia , Imunoglobulinas Estimuladoras da Glândula Tireoide/ultraestrutura , Fosfolipídeos/metabolismo , Domínios Proteicos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/ultraestrutura , Receptores da Tireotropina/agonistas , Receptores da Tireotropina/química , Receptores da Tireotropina/imunologia , Receptores da Tireotropina/ultraestrutura , Rotação , Tireotropina/química , Tireotropina/metabolismo , Tireotropina/farmacologia
15.
Cell Rep ; 40(1): 111008, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35793637

RESUMO

Compositional oscillations of the gut microbiome are essential for normal peripheral circadian rhythms, both of which are disrupted in diet-induced obesity (DIO). Although time-restricted feeding (TRF) maintains circadian synchrony and protects against DIO, its impact on the dynamics of the cecal gut microbiome is modest. Thus, other regions of the gut, particularly the ileum, the nexus for incretin and bile acid signaling, may play an important role in entraining peripheral circadian rhythms. We demonstrate the effect of diet and feeding rhythms on the ileal microbiome composition and transcriptome in mice. The dynamic rhythms of ileal microbiome composition and transcriptome are dampened in DIO. TRF partially restores diurnal rhythms of the ileal microbiome and transcriptome, increases GLP-1 release, and alters the ileal bile acid pool and farnesoid X receptor (FXR) signaling, which could explain how TRF exerts its metabolic benefits. Finally, we provide a web resource for exploration of ileal microbiome and transcriptome circadian data.


Assuntos
Microbiota , Transcriptoma , Animais , Ácidos e Sais Biliares , Dieta , Comportamento Alimentar , Íleo/metabolismo , Camundongos , Obesidade/metabolismo , Transcriptoma/genética
17.
Nature ; 606(7916): 968-975, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676490

RESUMO

Branched fatty acid (FA) esters of hydroxy FAs (HFAs; FAHFAs) are recently discovered lipids that are conserved from yeast to mammals1,2. A subfamily, palmitic acid esters of hydroxy stearic acids (PAHSAs), are anti-inflammatory and anti-diabetic1,3. Humans and mice with insulin resistance have lower PAHSA levels in subcutaneous adipose tissue and serum1. PAHSA administration improves glucose tolerance and insulin sensitivity and reduces inflammation in obesity, diabetes and immune-mediated diseases1,4-7. The enzyme(s) responsible for FAHFA biosynthesis in vivo remains unknown. Here we identified adipose triglyceride lipase (ATGL, also known as patatin-like phospholipase domain containing 2 (PNPLA2)) as a candidate biosynthetic enzyme for FAHFAs using chemical biology and proteomics. We discovered that recombinant ATGL uses a transacylation reaction that esterifies an HFA with a FA from triglyceride (TG) or diglyceride to produce FAHFAs. Overexpression of wild-type, but not catalytically dead, ATGL increases FAHFA biosynthesis. Chemical inhibition of ATGL or genetic deletion of Atgl inhibits FAHFA biosynthesis and reduces the levels of FAHFA and FAHFA-TG. Levels of endogenous and nascent FAHFAs and FAHFA-TGs are 80-90 per cent lower in adipose tissue of mice in which Atgl is knocked out specifically in the adipose tissue. Increasing TG levels by upregulating diacylglycerol acyltransferase (DGAT) activity promotes FAHFA biosynthesis, and decreasing DGAT activity inhibits it, reinforcing TGs as FAHFA precursors. ATGL biosynthetic transacylase activity is present in human adipose tissue underscoring its potential clinical relevance. In summary, we discovered the first, to our knowledge, biosynthetic enzyme that catalyses the formation of the FAHFA ester bond in mammals. Whereas ATGL lipase activity is well known, our data establish a paradigm shift demonstrating that ATGL transacylase activity is biologically important.


Assuntos
Aciltransferases , Ésteres , Ácidos Graxos , Hidroxiácidos , Aciltransferases/genética , Aciltransferases/metabolismo , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Animais , Diglicerídeos , Esterificação , Ésteres/química , Ésteres/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Humanos , Hidroxiácidos/química , Hidroxiácidos/metabolismo , Resistência à Insulina , Camundongos , Triglicerídeos
18.
Bioinformatics ; 38(9): 2612-2614, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35188179

RESUMO

SUMMARY: Genome annotation pipelines traditionally exclude open reading frames (ORFs) shorter than 100 codons to avoid false identifications. However, studies have been showing that these may encode functional microproteins with meaningful biological roles. We developed µProteInS, a proteogenomics pipeline that combines genomics, transcriptomics and proteomics to identify novel microproteins in bacteria. Our pipeline employs a model to filter out low confidence spectra, to avoid the need for manually inspecting Mass Spectrometry data. It also overcomes the shortcomings of traditional approaches that usually exclude overlapping genes, leaderless transcripts and non-conserved sequences, characteristics that are common among small ORFs (smORFs) and hamper their identification. AVAILABILITY AND IMPLEMENTATION: µProteInS is implemented in Python 3.8 within an Ubuntu 20.04 environment. It is an open-source software distributed under the GNU General Public License v3, available as a command-line tool. It can be downloaded at https://github.com/Eduardo-vsouza/uproteins and either installed from source or executed as a Docker image. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteogenômica , Fases de Leitura Aberta , Proteogenômica/métodos , Software , Genômica/métodos , Bactérias/genética
19.
JCI Insight ; 7(4)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35015730

RESUMO

Adiponectin receptor 1 (ADIPOR1) is a lipid and glucose metabolism regulator that possesses intrinsic ceramidase activity. Mutations of the ADIPOR1 gene have been associated with nonsyndromic and syndromic retinitis pigmentosa. Here, we show that the absence of AdipoR1 in mice leads to progressive photoreceptor degeneration, significant reduction of electroretinogram amplitudes, decreased retinoid content in the retina, and reduced cone opsin expression. Single-cell RNA-Seq results indicate that ADIPOR1 encoded the most abundantly expressed ceramidase in mice and one of the 2 most highly expressed ceramidases in the human retina, next to acid ceramidase ASAH1. We discovered an accumulation of ceramides in the AdipoR1-/- retina, likely due to insufficient ceramidase activity for healthy retina function, resulting in photoreceptor death. Combined treatment with desipramine/L-cycloserine (DC) lowered ceramide levels and exerted a protective effect on photoreceptors in AdipoR1-/- mice. Moreover, we observed improvement in cone-mediated retinal function in the DC-treated animals. Lastly, we found that prolonged DC treatment corrected the electrical responses of the primary visual cortex to visual stimuli, approaching near-normal levels for some parameters. These results highlight the importance of ADIPOR1 ceramidase in the retina and show that pharmacological inhibition of ceramide generation can provide a therapeutic strategy for ADIPOR1-related retinopathy.


Assuntos
Ceramidases/antagonistas & inibidores , DNA/genética , Mutação , Receptores de Adiponectina/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Doenças Retinianas/genética , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Receptores de Adiponectina/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia
20.
Cell Metab ; 34(1): 171-183.e6, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986332

RESUMO

Inexorable increases in insulin resistance, lipolysis, and hepatic glucose production (HGP) are hallmarks of type 2 diabetes. Previously, we showed that peripheral delivery of exogenous fibroblast growth factor 1 (FGF1) has robust anti-diabetic effects mediated by the adipose FGF receptor (FGFR) 1. However, its mechanism of action is not known. Here, we report that FGF1 acutely lowers HGP by suppressing adipose lipolysis. On a molecular level, FGF1 inhibits the cAMP-protein kinase A axis by activating phosphodiesterase 4D (PDE4D), which separates it mechanistically from the inhibitory actions of insulin via PDE3B. We identify Ser44 as an FGF1-induced regulatory phosphorylation site in PDE4D that is modulated by the feed-fast cycle. These findings establish the FGF1/PDE4 pathway as an alternate regulator of the adipose-HGP axis and identify FGF1 as an unrecognized regulator of fatty acid homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Humanos , Insulina/metabolismo , Lipólise/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...